
Unifying Temporal and Structural Credit Assignment Problems

Adrian K. Agogino
NASA Ames Research Cente

Mailstop 269-3
Moffett Field, CA 94035

adrian@email.arc.nasa.gov

Kagan Tumer
NASA Ames Research Center

Mailstop 269-3
Moffett Field, CA 94035

kagan@email.arc.nasa.gov

Abstract

Single-agent reinforcement learners in time-extended
domains and multi-agent systems share a com-
mon dilemma known as the credit assignment problem.
Multi-agent systems have the structural credit assign-
ment problem of determining the contributions of a par-
ticular agent to a common task. Instead, time-extended
single-agent systems have the temporal credit assign-
ment problem of determining the contribution of a par-
ticular action to the quality of the full sequence of
actions. Traditionally these two problems are consid-
ered different and are handled in separate ways. In this
article we show how these two forms of the credit as-
signment problem are equivalent. In this unified frame-
work, a single-agent Markov decision process can be
broken down into a single-time-step multi-agent pro-
cess. Furthermore we show that Monte-carlo estimation
or Q-learning (depending on whether the values of re-
sulting actions in the episode are known at the time
of learning) are equivalent to different agent util-
ity functions in a multi-agent system. This equivalence
shows how an often neglected issue in multi-agent sys-
tems is equivalent to a well-known deficiency in
multi-time-step learning and lays the basis for solv-
ing time-extended multi-agent problems, where both
credit assignment problems are present.

1. Introduction

The structural credit assignment problem of deter-
mining how a single agent’s actions contributes to a sys-
tem that involves the actions of many agents is inher-
ent in multi-agent domains. For a reinforcement learn-
ing agent to learn properly, this credit assignment prob-
lem needs to be resolved and the agent needs to receive
the appropriate reinforcement. Robotic soccer is a well
studied domain that clearly exhibits this form of credit

assignment problem, where learning algorithms need to
judge a particular player’s role in achieving the over-
all goal of the mutli-agent system of winning the game
[6]. This structural credit assignment problem has been
studied in other domains including foraging robots [5],
network routing [15] and bimatrix games [3]. In these
systems the credit assignment problem was handled im-
plicitly by creating a reward structure that credited an
agent’s role in performance of a larger system.

In a single-agent domain, the temporal credit assign-
ment problem is concerned with how an action taken
at a particular time step affects the final outcome. For
example, if a player wins a game of checkers, it may
be difficult for that player to determine which of his
many moves were the most important in helping him
win, and which moves may have actually been detri-
mental. Many reinforcement learning algorithms have
been derived to assign proper credit assignment includ-
ing Q-learning, Sarsa and TD(λ)[13, 8, 10]. The goal
of these algorithms is to make the learner converge to
the correct policy, in a speedy manner, or to at least
make a good tradeoff between correctness and speed.

This paper poses the single-agent time-extended
problem as a multi-agent single-time-step problem,
transforming the temporal credit assignment problem
into a structural credit assignment problem. This credit
assignment problem is then solved with multi-agent
utilities, where credit is assigned through agent-specific
utility functions. In our solution an agent evaluates its
role in the outcome of a global utility function over all
agents through a private utility function that is both
“aligned” with the global utility, yet is sensitive to the
agent’s actions. In many cases the multi-agent solution
is equivalent to popular reinforcement learners. Show-
ing this equivalence is beneficial in many ways: i) It al-
lows users to pose many problems either as a structural
or a temporal credit assignment problem, and choose
the one that is best suited for the domain; ii) it high-
lights potential pitfalls of some approaches to struc-

tural credit assignment by expressing their problems
as well known deficiencies of temporal credit assign-
ment algorithms; iii) it lays the basis for deriving prin-
cipled solutions to time-extended multi-agent systems,
where both credit assignment problems are present.

In this work, Section 2 describes the structural credit
assignment problem and presents a solution in terms of
learnable private utilities that are aligned with a global
utility. Section 3 summarizes relevant issues in the stan-
dard temporal credit assignment problem, where a sin-
gle agent needs to determine how an action affects
the entire sequence of rewards received after that ac-
tion. Section 4 then shows how the two credit assign-
ment problems can be unified by transforming a single-
agent multi-time-step problem into a structural credit
assignment problem, allowing temporal credit assign-
ment problems to be posed as structural credit assign-
ment problems. Sections 5, 6 and 7 then show how the
new structural credit assignment problem can be solved
using three utilities presented in section in 2. The appli-
cation of two of the utilities illustrates the relationship
between two popular temporal credit assignment prob-
lem methods and the multi-agent concepts of utility
alignment, learnability and system observability. The
application of the third utility shows how a subtle pit-
fall common in mutli-agent utilities relates to an obvi-
ous problem in multi-time step systems.

2. Structural Credit Assignment

Many structural credit assignment problems in
multi-agent systems have been successfully ad-
dressed with multi-agent utilities [4, 15, 11, 1, 7, 12].
This section summarizes how to create an effec-
tive multi-agent utility that has two important prop-
erties: It is both aligned with a global utility over all
agents, and it is easy for the agents to learn. These
properties will be called “factoredness” and “learn-
ability” respectively. Results from this section will
be used later to show how a multi-time-step sin-
gle agent system can be cast as a single-time-step
multi-agent problem. To avoid the confusion by over-
loading the word “agent”, we will use the world
“agent” exclusively in the single-agent problem. In-
stead we will use the term “node” in place of “agent”
in the mutli-agent extensions we discuss, and in par-
ticular we will call such systems “multi-node sys-
tems.”

The goal of the multi-node system is to maximize
a world utility function, G(z), which is a function of
the joint move of all nodes in the system, z. Instead of
maximizing G(z) directly, each node, η, tries to maxi-
mize its private utility function gη(z). The goal of

this section is to solve the structural credit assignment
problem in this context, i.e., to create private utility
functions that lead the multi-node system to high val-
ues of G(z). Note that in many systems an individual
node η will only influence some of the components of z.
We will use the notation zη to refer to the parts of the
state that is influenced by the actions of η. The vec-
tor zη is the same size as z and is equal to z except
that all the components that η does not influence are
set to zero. In this notation z− zη expresses the states
of all the nodes other than η. This notation is used in-
stead of standard vector decomposition to make the ad-
dition and subtraction of vector components explicit.

2.1. Node Utilities

While each node is trying to maximize its private
utility, as a whole we want the system to try to maxi-
mize the global utility. To do this, we want the nodes’
private utilities to be aligned with the global utility.
We call such an aligned utility a “factored utility.” For-
mally, a private utility is factored when for each agent
η:

gη(z) ≥ gη(z′) ⇔ G(z) ≥ G(z′)
∀z, z′ s.t. z − zη = z − z′η .

Intuitively, for all pairs of vectors z and z′ that differ
only for agent η, a change in η’s state that increases its
private utility cannot decrease the world utility.

As a trivial example, any system in which all the
private utility functions equal G is factored [2]. How-
ever such systems often suffer from low signal-to-noise,
a problem that get progressively worse as the size of the
system grows. This is because for large systems where
G sensitively depends on all components of the sys-
tem, each agent may experience difficulty discerning
the effects of its actions on G. As a consequence, each
η may have difficulty achieving high gη. We call this
signal/noise effect learnability. Intuitively learnability
is the ratio of the sensitivity of the utility to η′s ac-
tions, to the sensitivity of the utility to the actions of
all other agents. So at a given state z, the higher the
learnability, the more gη(z) depends on the move of
agent η, i.e., the better the associated signal-to-noise
ratio for η.

2.2. Fully Observable Difference Utility

A factored utility that has been shown to be easier
to learn than the global utility in domains where z is
fully observable is the difference utility [15], given
by:

DUη(z) = G(z)−G(z − zη) . (1)

This utility is factored because the second term does
not depend on the state of η, and thus the only way
η can change the value of the difference utility is by
changing the value of the first term, which is the global
utility. Intuitively, the second term of the difference
utility is the value of the global utility without node
η. The difference utility then quantifies node η’s con-
tribution to the global utility. In addition to being fac-
tored it can be proven that in many circumstances, es-
pecially in large problems, that DUη has higher learn-
ability than does the global utility [15]. This is mainly
due to the second term of the DUη, which removes a lot
of the effect of other agents (i.e., noise) from η’s util-
ity.

The fully observable difference utility has been suc-
cessfully applied to various domains, including
packet routing over a data network [15], the conges-
tion games [16], data downloads from a constellation
of satellites [14], and multi-agent gridworlds [11].

2.3. Partially Observable Difference Utility

In many cases, it may be impossible to compute
DUη(z) (or G(z)) because some of the component val-
ues of z are unknown to node η. We will denote the
component of z that is known by η using the vector zoη

and the part of z that is unknown to η using the vec-
tor zhη . The vector zoη is the same as z except that all
the elements that are unknown to η are set to zero. We
call the known components the observable compo-
nents of the worldline. The vector zhη conversely con-
tains all of the values that are not observable. The vec-
tor z is the sum of these two vectors: z = zoη +zhη . If z
does not equal zoη , then node η may not be able com-
pute DUη(z) directly. Instead we must approximate it
using the information in zoη . One way to do this is
to simply use zoη as the parameter to the difference
utility. We will call this utility the truncated differ-
ence utility (TDU) since the non-observable compo-
nents are essentially truncated out 1. The TDU is given
by:

TDUη(z) = DUη(zoη) = G(zoη)−G(zoη − zoη
η) . (2)

This utility has been shown to be highly learnable,
since the second term removes much of the noise caused
by the actions of other agents [1]. In fact TDUη in gen-
eral is even more learnable than DUη since zoη is likely
to contain information pertinent to node η whereas z
may contain a lot of irrelevant information. The main
problem with this utility however is that it is not fac-
tored with respect to G(z). This utility is only factored

1 This utility is called “TTU” in [1].

insofar as G(zoη) approximates G(z). This means that
a node could take actions that improve the value of its
TDUη, yet reduce the value of the global utility.

Another alternative to truncating out the non-
observable components is to estimate the value of the
difference utility given observable components. We
will call this utility the estimated difference util-
ity (EDU) which is given by:

EDUη(z) = E[DUη(z)|zoη]
= E[G(z)|zoη]− E[G(z − zη)|zoη] ,(3)

where E[·|zoη] is the expected value over non-observed
states. While this utility is also not factored with re-
spect to G(z), in general E[G(z)|zoη] is closer to G(z)
than G(zoη) is, and hence is more likely to be factored
than TDU [1]. Any action that an agent takes to in-
crease the value of the EDU must increase the value
of E[G(z)|zoη], since its actions are removed from the
second term of the EDU . When a good estimate is
used, an action that increases the value of E[G(z)|zoη],
is very likely to increase the value of the global util-
ity, G(z). Similarly an action that increases the value
of TDU must also increase the first term of the TDU ,
G(zoη). However when many of the components of z
are not observable, there are many possible actions that
will increase G(zoη), but will not increase G(z), due to
interactions with non-observable components.

3. Temporal Credit Assignment Prob-
lem

In a typical temporal credit assignment problem, an
agent takes a sequence of actions, transitions through a
sequence of states, and receives a sequence of rewards.
The global utility for such a system in the episodic case
is the undiscounted sum of rewards:

G(z) =
∑

t

Rt(z) . (4)

We use the undiscounted version for simplicity, since
this paper uses an episodic “finite-horizon” model of
learning where discounting is not needed. When learn-
ing is not episodic, discounting must be used to avoid
infinite sums. In such systems the utility at a time
step is the discounted sum of future rewards, G(z) =∑

t γtRt(z), where γ is the discount factor in the range
[0 1]. We will focus on problems where an agent chooses
its actions based on the estimates of future rewards
stored in a “Q-table.” This Q-table is indexed by all
the possible states and actions, where the value Q(s, a)
is the estimation of the sum of future rewards when ac-
tion a is taken in state s. The credit assignment prob-
lem in this case consists of determining how an action

at time step t, at, affect all of the rewards after time
step t.

Now let us summarize versions of two reinforcement
learning methods that address this problem for sim-
ple deterministic domains: First-visit Monte-carlo esti-
mation and Q-learning [9]. With Monte-carlo estima-
tion, an action is given credit for all the subsequent re-
wards. Therefore the Q-table estimate of the future re-
wards that resulting from action at in state st is based
on the rewards obtained after the action was taken.
In deterministic Monte-carlo estimation, the Q-table
value, estimating the undiscounted sum of future re-
wards after action at is taken in state st is:

QMC(st, at) =
∑
t′≥t

Rt′ , (5)

where QMC is the Q-table for the Monte-carlo estima-
tor. Monte-carlo estimation works best when the value
of the future rewards obtained after an action are very
dependent on that action. However, in some domains
many of the values of rewards received after time t may
not be dependent on the action at. In such cases the
Q-table estimate for action at in state st may contain a
lot of noise since it includes reward values that are pri-
marily a function of future actions. If the future ac-
tions change, the value of action at in state st may be
very different. In essence, the temporal credit assign-
ment problem is only partially solved by this method.

In contrast to Monte-carlo estimation, a Q-learner
only gives full credit to the immediate reward, and in-
stead uses other Q-values to estimate the values of fu-
ture rewards. In Q-learning the Q-table value for ac-
tion at taken in state st is:

QQL(st, at) = Rt + max
a

QQL(st+1, a) , (6)

where QQL is the Q-table used by the Q-learner. Agents
using Q-learning can often learn more quickly than
agents using Monte-carlo learning, when an agents ac-
tion has much more influence on its immediate reward
than future rewards. In addition the Q-tables can be
updated after every action with Q-learning, without
waiting for the end of the episode. Note that for sim-
plicity we use the deterministic form for both learning
methods, because their update rules are cleaner in de-
terministic problems. However the conclusions of this
paper do not depend on this determinism. In the next
section we will show how these two reinforcement learn-
ing methods can be seen as forms of difference utilities.

4. Unified View of Credit Assignment

In this section we show how any Markov Decision
Process (MDP) for a single-agent system can be posed

as a single-time-step multi-node problem. In a single-
agent MDP system there is a set of states and transi-
tions between the states. The agent starts in a start-
state and then transitions through the state-transition
diagram, receiving rewards depending on the transi-
tions taken. In some cases the agent will continue mak-
ing transition until it reaches an absorbing state. In-
stead, this paper will use a “finite horizon” model,
where an agent moves for a fixed number of time steps
after starting in its start-state. One of the most impor-
tant properties of an MDP is that they are “memory-
less” in that the expected value of future rewards that
will be received after an agent enters a state will be in-
dependent of the set of states that the agent was in be-
fore. The best transition that an agent can take there-
fore can be determined solely on its current state. Fig-
ure 1 (top) shows a simple MDP with only four states
with two transitions per state.

This section turns the MDP into a multi-node prob-
lem by first assigning a node to every state of the MDP.
The notation s(η) is used to indicate the state for a
node η. An action for a node η corresponds to a tran-
sition out of state s(η). The nodes’ actions determine
the transitions that the agent will take from its state.
Note that the agent now simply follows the “actions”
of the nodes and performs no learning of its own. All
the learning takes place in the nodes. The actions of all
of the nodes, z, therefore define the path an agent will
take through the state-transition diagram of the MDP,
given the agent’s start-state. The sum of rewards re-
ceived on this path define the global utility, G(z). These
nodes have a simple single-time-step learning task of
mapping their immediate private utility values to their
actions. This mapping can be stored in a simple single-
state Q-table over actions for each node. In a deter-
ministic domain, the update rule for this Q-table after
taking action a is simply:

Qη(a) = gη , (7)

where gη is the utility the node is trying to maximize.
Note that this is a much smaller Q-table than the ones
used in Q-learning and Monte-carlo estimation, since
it is only for one state.

An example multi-node system is shown in figure
1 (middle) where each of the four states in the MDP
corresponds to one of four nodes. The action vector
z = [1 1 1 2]T encodes a set of four actions, one per
node. For this action vector, the agent in the MDP
transitions right twice receiving a reward of R3 and
R4. The global utility for z, G(z), is therefore R3 +R4.
Computing global utility for the actions vector z − zη

will require more definitions. Consider the case where
we want to compute the utility G(z− zη) for node 3 in

State 1 State 2 State 3 State 4

R4

R3R2

R3

R1

R2

State 1 State 2 State 3 State 4

h1 h2 h3 h4

R3 R4

Z = [1 1 1 2]T G(z) = R3 + R4

State 1 State 2 State 3 State 4

R3

Z - Zh3 = [1 1 0 2]T G(Z - Zh3) = R3 + 0
Absorbing

State

“Null’’ Action

R4R1

G(z) = R3 + R4

Figure 1. Four State MDP. (Top) Agent starts in
State 2 and makes transitions for two time steps,
receiving two rewards. (Middle) In multi-node
version, anode is assigned toeach state.Anode’s
action is a choice of a transition.The choice is en-
coded as either a 1 (right-transition) or a 2 (left-
transition) in the action vector, z. (Bottom) The
action vector z − zη3 has a zero in its third ele-
ment. This corresponds to a “zero action” tran-
sitioning the agent to an absorbing state.

the example, where z − zη = [1 1 0 2]T . The third ele-
ment of this action vector is zero, which does not corre-
spond to any transition. The transition the agent would
take out of the third state is undefined. We will there-
fore define this “zero” action to correspond to a “null”
transition, which will always return a reward of zero
and will transition into an absorbing state as shown
in Figure 1 bottom. All rewards after this transition is
taken will have a value of zero. The value of G(z − zη)
is therefore equal to R3, since the agent takes the right-
action from state 2, receiving a reward of R3 and then
takes the null transition from state 3. Note that other
definitions can be made for the zero-action, and de-
pending on the encoding, the zero-action may refer to

an actual transition. However the results shown in this
paper are based on a transition to an absorbing state,
and assume that actions are encoded so that an ac-
tion encoded as a zero never refers to an actual transi-
tion in the MDP.

Let us now describe the learning that takes place
in this MDP. This paper uses an episodic model of
learning where the agent starts at a start-state at the
beginning of an episode and moves according to the
transitions available to the MDP. If the agent is us-
ing Monte-carlo estimation or Q-learning, it makes the
decisions about which transition to take from a state,
based on the Q-table values associated with that state.
An agent using Monte-carlo estimation will update the
Q-table values at the end of the episode, based on the
reward values received during the episode. An agent
using Q-learning will update the Q-table values during
the course of an episode. In the multi-node version of
the MDP, each node will perform a single non-null ac-
tion at the beginning of the episode. This action will be
determined from the small Q-table used by each node,
which contains estimate values only for the nodes state.
Each node will then update its Q-table using its pri-
vate utility, either at the end of the episode or during
the episode, depending on the private utility used.

As an example take the gridworld problem (Figure
2). In this classic problem, the agent can move from
grid square to grid square, until it reaches a terminal
state. The agent can move in four directions, and the
state is determined by which grid square the agent is
in. This problem can be broken down into nodes, where
each grid square is assigned a node. At the beginning of
the episode each node independently chooses an action
from one of four possible moves. The MDP agent then
follows the actions chosen by the nodes, until it reaches
the terminal square. All the nodes associated with grid
squares that the gridworld agent actually went through
are updated at the end of the episode.

If one of the node’s actions is replaced with the null
action, then the gridworld agent will not progress be-
yond the node’s state as shown in Figure 3. In this
example, the node associated with the third state en-
tered has its actions changed from the move-right ac-
tion to the null action, corresponding to its component
in the action vector z − zη. Whereas the reward sum-
mation for G(z) sums eight rewards, the reward sum-
mation for G(z − zη) will include only the first two re-
wards, since the rewards received after the second time
step have a value of zero. In a sense G(z−zη) gives the
quality of the path up to node η. Therefore difference
of these two utilities G(z) − G(z − zη) gives the qual-
ity of the path past node η. Since anything that hap-
pened before the agent entered node η does not affect

$

Figure 2.ClassicGridworldProblembrokendown
into multiple nodes. Each grid square is assigned
a node, which chooses an action at the beginning
of each episode.The agent then follows these ac-
tions. Nodes that were visited by the agent are
updated (black arrows).

the value of G(z)−G(z− zη), that utility can be inter-
preted as the contribution of node η to the full path.

$

Absorbing State
“Zero Action”

Figure 3. When z is changed to z − zη the ac-
tion of node η (third square right of agent’s start-
ing place) is changed from the move-right action
to the “null” action. With this change, the grid-
world agent no longer moves along the dotted
line and instead moves into an absorbing state,
receiving rewards of zero.

5. DU and Monte-Carlo Estimation

If all of the rewards of an episode of N time steps
are known when the private utility for a node is com-
pute, the DU (Equation 1) can be used as the node’s
private utility:

DUη(z) = G(z)−G(z − zη) (8)

=
N∑

t=1

Rt(z)−
N∑

t=1

Rt(z − zT (η)) (9)

=
N∑

t=1

Rt(z)−
T (η)−1∑

t=1

Rt(z − zT (η))

−
N∑

t=T (η)

Rt(z − zT (η)) ,(10)

where T (η) is the first time the agent entered state
S(η). For times before T (η), the action taken by node
η is irrelevant so Rt(z − zT (η)) equals Rt(z) for all
t < T (η). Therefore we can rewrite DU as:

DUη(z) =
N∑

t=1

Rt(z)−
T (η)−1∑

t=1

Rt(z) (11)

−
N∑

t=T (η)

Rt(z − zT (η)) (12)

=
N∑

t=T (η)

(
Rt(z)−Rt(z − zT (η))

)
. (13)

In addition all rewards Rt(z−zT (η)) past time T (η) are
zero because the action at time T (η) is now the null-
action. Therefore we can simply write DU as:

DUη(z) =
N∑

t=T (η)

Rt(z) . (14)

The difference utility for node η’s action is therefore
the same as the undiscounted Monte-carlo estimation
that would be received in a single-agent system for tak-
ing an action in state S(η).

6. TDU and Immediate Rewards

Using the difference utility in this problem requires
a node to know all of the future actions of an episode.
This is an issue with Monte-carlo estimation, where
an episode has to be completed before learning is per-
formed. However in many reinforcement learning do-
mains we want learning to be performed immediately,
even before the future actions are taken. If the fu-
ture actions of an episode are unknown, we can use
the TDU instead of the DU by including only the cur-
rent and previous actions in the observable components
of z. The TDU for node η can be computed as follows:

TDUη(z) = DUη(zoη) (15)

=
N∑

t=T (η)

Rt(zoη) (16)

= RT (η)(zoη) +
N∑

t=T (η)+1

Rt(zoη) (17)

Since the future actions are unknown, all actions past
time T (η) are not observable. Therefore the actions in
the zoη corresponding to actions that occur past time
T (η) are null-actions from the definition of zoη . Re-
wards that are a function of zoη therefore have a value
of zero past time T (η). The TDU therefore simply re-
duces to the immediate reward:

TDUη(z) = RT (η)(zoη) (18)

This utility is unsatisfactory since to properly evaluate
the quality of an action, a node needs to see the conse-
quences of that action on future rewards. It is equiva-
lent to Monte-carlo estimation with infinite discounting
(γ = 0), which is clearly unacceptable in most domains.
Note that the unacceptability of this utility is not obvi-
ous from its definition in Section 2. In fact even though
this utility is not factored, it seemed promising due to
its high learnability. The use of non-factored utilities is
a potential problem in many multi-agent system appli-
cations. Unfortunately the downside of a non-factored
utility is not as obvious as the downside of infinite dis-
counting. The results in this section shows that they
are equivalent, and that non-factored utilities have to
be carefully evaluated in multi-agent domains, since the
complexity of the multi-agent system may hide their
danger.

7. EDU and Q-learning

Instead of the TDU, the EDU can be used as the
utility for node η when the future actions in an episode
are unknown. In this system the EDU is computed as
follows:

EDUη(z) = E[DUη(z)|zoη]

=
N∑

t=T (η)

E[Rt(z)|zoη]

= E[RT (η)(z)|zoη] + E[
N∑

t=T (η)+1

Rt(z)|zoη] .

Since the reward at time T (η) is completely determined
from the observable components, E[RT (η)(z)|zoη]
equals RT (η)(z), leaving us with the problem of es-
timating the sum of future rewards for an action.
This estimate can be made by keeping a record of
all of the rewards received for all the episodes. Us-
ing the rewards from previous episodes, a node, η,
can estimate

∑N
t=T (η)+1 Rt(z) by looking at the se-

quence of rewards received the last time an agent went
through state STη+1. However recording all of these re-
wards is unnecessary since the relevant rewards are

summarized in the Q-tables of other nodes. As-
suming the state entered after taking an action
at time T (η) is known, this estimate of future re-
wards can be obtained from Q-table values of the node
used in the next state, and we can write EDU as fol-
lows:

EDUη(z) = RT (η)(zo) + E[Qη′(zT (η)+1)|zoη] (19)

where zT (η)+1 is the next action after time T (η) and
η′ is the node corresponding to the state entered at
time T (η)+1. Since zT (η)+1 is not observable, the esti-
mation of Qη′(zT (η)+1) will depend on the exploration
method used for each node. However for most explo-
ration methods, as the rate of exploration approaches
zero, the action correspond to the highest Q-value will
always be used, resulting in the following computation
of EDU:

EDUη(z) = RT (η)(zo) + max
a

Qη′(a) , (20)

where a is a possible action from state S(η′). In this sit-
uation the EDU for node η therefore provides the Q-
learning estimate for action zη in state s(η). Note that
we started out trying to make the “on-policy” estimate
of what the sum of future rewards actually will be given
the actions taken. However since none of the future ac-
tions were known we ended up with the “off-policy”
Q-learning estimate instead. The on-policy Sarsa type
estimate cannot be used in this situation because the
action taken after time T (η) is not observable.

8. Discussion

This paper unifies the structural credit assignment
problem present in single-time-step multi-agent sys-
tems and the temporal credit assignment present in
time-extended single-agent systems. It does this by
showing the relationship between the three utilities,
DU, EDU and TDU to the three different reinforce-
ment learning methods, monte-carlo estimation, Q-
learning and immediate reward learning, respectively.
In each case the relation between the utility and the
reinforcement learner is made through a specific con-
struction of a multi-node system. The structural credit
assignment view of temporal credit assignment high-
lights the salient properties of these methods along
with their deficiencies. This view shows how the use
of non-factored utilities commonly used in multi-agent
systems is equivalent to a multi-time-step utility gener-
ally not considered in that field. In its place this paper
shows how factored and close to factored utilities re-
late to successful reinforcement learning methods.

This paper has discussed only single-time-step
multi-agent problems and multi-time-step single-agent

problems. The multi-time-step multi-agent prob-
lem is more difficult, since both temporal and struc-
tural credit assignment problems have to be dealt with
at once. However using the method described in Sec-
tion 4 it is possible to view a multi-time-step
multi-agent problem as only a structural credit assign-
ment problem.

For example take the gridworld problem shown in
Figure 2. A multi-agent version of this problem can
be defined by allowing many agents to move on the
same grid. The reward for a time-step in the multi-
agent gridworld would then be a function of all the
grid-squares the agents occupy at that time step. This
can be turned into a multi-node single-time-step prob-
lem by assigning a node to each agent/grid-square pair.
So if there are n grid-squares and m agents there would
be nm nodes in the multi-node formulation. The dif-
ference utility can then be derived for each node in the
same way it is done in Section 5, up to equation 13:

DUη(z) =
N∑

t=T (η)

(
Rt(z)−Rt(z − zT (η))

)
.

The key difference in the multi-agent version is how we
define the effects of the null-action for an agent. In Sec-
tion 4 it was defined so that the rewards Rt(z − zT (η))
had a value of zero past time T (η). This made sense in
a single-agent system where we are summing rewards
for a single agent. In the multi-agent version we have a
double summation over time and agents (

∑
η

∑
t Rη,t)

and this sum will not be zero if a single agent is taken
out. Instead any reduction in the term Rt(z−zT (η)) will
be system dependent. Our current research focuses on
exploiting this coupling to allow faster convergence and
better performance in multi-time-step multi-agent sys-
tems.

References

[1] A.Agogino andK.Tumer. Team formation and commu-
nication restrictions in collectives. In Proceedings of the
Second International Joint Conference on Autonomous
Agents andMulti-Agent Systems,Melbourne,Australia,
July 2003.

[2] R.H.Crites andA.G.Barto. Improving elevator perfor-
mance using reinforcement learning. In D. S. Touretzky,
M. C. Mozer, and M. E. Hasselmo, editors, Advances in
Neural Information Processing Systems - 8, pages 1017–
1023. MIT Press, 1996.

[3] J. Hu and M. P. Wellman. Multiagent reinforcement
learning: Theoretical framework and an algorithm. In
Proceedings of theFifteenth InternationalConference on
Machine Learning, pages 242–250, June 1998.

[4] M. L. Littman. Markov games as a framework for multi-
agent reinforcement learning. In Proceedings of the 11th

International Conference on Machine Learning, pages
157–163, 1994.

[5] Maja JMataric. Reward functions for accelerated learn-
ing. In Machine Learning: Proceedings of the Eleventh
International Conference, pages 181–189, San Fran-
cisco, CA, 1994.

[6] P. Stone. Layered Learning in Multi-Agent Systems: A
Winning Approach to Robotic Soccer. MIT Press, Cam-
bridge, MA, 2000.

[7] P. Stone and M. Veloso. Multiagent systems: A sur-
vey from a machine learning perspective. Autonomous
Robots, 8(3), 2000.

[8] R. S. Sutton. Learning to predict by themethods of tem-
poral differences. Machine Learning, 3:9–44, 1988.

[9] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 1998.

[10] G.Tesauro. Practical issues in temporaldifference learn-
ing. Machine Learning, 8:33–53, 1992.

[11] K. Tumer, A. Agogino, and D. Wolpert. Learning se-
quences of actions in collectives of autonomous agents.
In Proceedings of the First International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems,
pages 378–385, Bologna, Italy, July 2002.

[12] K. Tumer and D. Wolpert, editors. Collectives and the
Design of Complex Systems. Springer, 2004. To appear.

[13] C. Watkins and P. Dayan. Q-learning. Machine Learn-
ing, 8(3/4):279–292, 1992.

[14] D. H. Wolpert, J. Sill, and K. Tumer. Reinforcement
learning in distributed domains:Beyond teamgames. In
Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence, pages 819–824, Seat-
tle, WA, 2001.

[15] D. H. Wolpert, K. Tumer, and J. Frank. Using collective
intelligence to route internet traffic. InAdvances inNeu-
ral Information Processing Systems - 11, pages 952–958.
MIT Press, 1999.

[16] D.H.Wolpert,K.Wheeler, andK.Tumer. Collective in-
telligence for control of distributed dynamical systems.
Europhysics Letters, 49(6), March 2000.

